14 research outputs found

    Thermal Infrared Multispectral Scanner (TIMS): An investigator's guide to TIMS data

    Get PDF
    The Thermal Infrared Multispectral Scanner (TIMS) is a NASA aircraft scanner providing six channel spectral capability in the thermal infrared region of the electromagnetic spectrum. Operating in the atmospheric window region (8 to 12 micrometers) with a channel sensitivity of approximately 0.1 C, TIMS may be used whenever an accurate measure of the Earth's surface is needed. A description of this scanner is provided as well as a discussion of data acquisition and reduction

    The rings of Saturn

    Get PDF
    The upcoming Mariner Jupiter-Saturn '77 space project is discussed. The variations in radar and radio observations are evaluated, along with particle distribution within the Saturn rings

    Mars Observer mission

    Get PDF
    The Mars Observer mission will extend the exploration and characterization of Mars by providing new and systematic measurements of the atmosphere, surface, and interior of the planet. These measurements will be made from a low-altitude polar orbiter over a period of 1 Martian year, permitting repetitive observations of the surface and of the seasonal variations of the atmosphere. The mission will be conducted in a manner that will provide new and valuable scientific data using a distributed data system that minimizes operational complexity and cost

    Evaluation of thermal data for geologic applications

    Get PDF
    Sensitivity studies using thermal models indicated sources of errors in the determination of thermal inertia from HCMM data. Apparent thermal inertia, with only simple atmospheric radiance corrections to the measured surface temperature, would be sufficient for most operational requirements for surface thermal inertia. Thermal data does have additional information about the nature of surface material that is not available in visible and near infrared reflectance data. Color composites of daytime temperature, nighttime temperature, and albedo were often more useful than thermal inertia images alone for discrimination of lithologic boundaries. A modeling study, using the annual heating cycle, indicated the feasibility of looking for geologic features buried under as much as a meter of alluvial material. The spatial resolution of HCMM data is a major limiting factor in the usefulness of the data for geologic applications. Future thermal infrared satellite sensors should provide spatial resolution comparable to that of the LANDSAT data

    Yearly and seasonal variations of low albedo surfaces on Mars in the OMEGA/MEx dataset: Constraints on aerosols properties and dust deposits

    Full text link
    The time variations of spectral properties of dark martian surface features are investigated using the OMEGA near-IR dataset. The analyzed period covers two Mars years, spanning from early 2004 to early 2008 (includes the 2007 global dust event). Radiative transfer modeling indicates that the apparent albedo variations of low to mid-latitude dark regions are consistent with those produced by the varying optical depth of atmospheric dust as measured simultaneously from the ground by the Mars Exploration Rovers. We observe only a few significant albedo changes that can be attributed to surface phenomena. They are small-scaled and located at the boundaries between bright and dark regions. We then investigate the variations of the mean particle size of aerosols using the evolution of the observed dark region spectra between 1 and 2.5 {\mu}m. Overall, we find that the observed changes in the spectral slope are consistent with a mean particle size of aerosols varying with time between 1 and 2 {\mu}m. Observations with different solar zenith angles make it possible to characterize the aerosol layer at different altitudes, revealing a decrease of the particle size of aerosols as altitude increases

    A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site

    Get PDF
    This article discusses relevant physical properties of the regolith at the Mars InSight landing site as understood prior to landing of the spacecraft. InSight will land in the northern lowland plains of Mars, close to the equator, where the regolith is estimated to be ≥3--5 m thick. These investigations of physical properties have relied on data collected from Mars orbital measurements, previously collected lander and rover data, results of studies of data and samples from Apollo lunar missions, laboratory measurements on regolith simulants, and theoretical studies. The investigations include changes in properties with depth and temperature. Mechanical properties investigated include density, grain-size distribution, cohesion, and angle of internal friction. Thermophysical properties include thermal inertia, surface emissivity and albedo, thermal conductivity and diffusivity, and specific heat. Regolith elastic properties not only include parameters that control seismic wave velocities in the immediate vicinity of the Insight lander but also coupling of the lander and other potential noise sources to the InSight broadband seismometer. The related properties include Poisson’s ratio, P- and S-wave velocities, Young’s modulus, and seismic attenuation. Finally, mass diffusivity was investigated to estimate gas movements in the regolith driven by atmospheric pressure changes. Physical properties presented here are all to some degree speculative. However, they form a basis for interpretation of the early data to be returned from the InSight mission.Additional co-authors: Nick Teanby and Sharon Keda

    Mars Observer's Global Mapping Mission

    No full text

    Mars Global Surveyor Mission: Overview and Status

    No full text
    The Mars Global Surveyor (MGS) spacecraft achieved a 45-hour elliptical orbit at Mars on 11 September 1997 after an 11-month cruise from Earth. The mission is acquiring high-quality global observations of the martian surface and atmosphere and of its magnetic and gravitational fields. These observations will continue for one martian year
    corecore